If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20=101
We move all terms to the left:
x^2+20-(101)=0
We add all the numbers together, and all the variables
x^2-81=0
a = 1; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·1·(-81)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*1}=\frac{18}{2} =9 $
| t^2+50=-94 | | t2+50=-94 | | 3√(2x+4)=12 | | v-6.5=7.15 | | Y=14476x+1500 | | √(x+2)=7 | | 5p-6+2(p-7)=29 | | 3x=27/13 | | -77=-7(x-11) | | 3y+y-4=16 | | 4(3x-7)=x+5 | | -5=-2(3-7x) | | t^2-100t-50=0 | | 30=3*x | | 4z=360 | | -5=2(3-7x) | | 19=x/12+16 | | 12z-40=360 | | 16z-40=360 | | 199=9+10v | | 14x+5=4x | | 14x+5=8x | | r^2-20r+16=0 | | 8=-2n+4n | | 12z+50=180 | | F(x)=-0-7 | | r2-20r+16=0 | | F(x)=-3-7 | | F(x)=-5-7 | | 3(x+1)-5+3x=10 | | 10/p=11.696/16.202 | | 3x+(2x+10)=100 |